Penn State logo
Search: This site | People | Departments | Penn State
Riparia
wetland photo

Published Article/Report

Abstract

Many programs are in place to protect and restore low-order streams and riparian zones. However, information on riparian zone forests is sparse for many biogeographical regions, especially compositional and structural data that would provide useful targets for restoration. This study provides quantitative data on riparian zone composition and forest structure from three physiographic provinces of eastern United States. Data from 219 low-order (first- to fourth-order) forested reaches were arranged by three basal area (BA) categories meant to represent successional categories and variations in forest structure. Detrended correspondence analysis (DCA) was used to illustrate differences among successional categories and physiographic provinces. The DCA ordination separated stands into four physiographic subregions, based on the species composition of late-successional stands. Many early to mid-successional stands (<30 m2/ha) were similar in composition to late-successional reference stands (BA ≥ 30 m2/ha) in the same physiographic subregion. In such sites, natural successional processes would likely be sufficient to restore the compositional and structural attributes inherent in late-successional stands if provided long-term protection. Other sites with dissimilar compositions may have been recovering from more intensive types of alterations, such as mechanized land clearing. In such sites, restoration to historic compositions could benefit functionally by planting oaks (Quercus spp. L.) and other heavy mast species.